```python
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import classification_report, confusion_matrix
# 加载数据集
data = pd.read_csv('电力系统故障数据.csv')
# 数据预处理
X = data.drop('故障类型', axis=1)
y = data['故障类型']
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 特征缩放
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# 创建模型
model = SVC(kernel='linear', C=1)
# 训练模型
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
# 评估模型
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import classification_report, confusion_matrix
# 加载数据集
data = pd.read_csv('电力系统故障数据.csv')
# 数据预处理
X = data.drop('故障类型', axis=1)
y = data['故障类型']
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 特征缩放
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# 创建模型
model = SVC(kernel='linear', C=1)
# 训练模型
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
# 评估模型
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
```
写出人工智能应对电力系统故障的检测的模型代码
```pythonimport numpy as npimport pandas as pdfrom sklearn.model_selection import train_test_splitfrom sklearn.preprocessing import StandardScalerfrom skle。下面小编给大家分享写出人工智能应对电力系统故障的检测的模型代码,希望能帮助到大家。 写出人工智能应对电力系统故障的检测的模型代码文档下载网址链接:
推荐度:





点击下载完整版文档为doc格式