四、学生答卷质量分析
填空题:第1至3题考查向量的线性运算和位置向量的坐标线性运算,答对率约85%左右,其中大部份学生对书写向量遗漏箭头,部分学生将第3题的答案(―9,3)答成(9,―3)或(―9,―3)等。符号是不清楚的,反映出部份学生对向量的线性运算并非完全掌握。
第4~7题涉及立体几何问题,主要考查线面关系,面面关系。答对率70%左右,其它学生主要是空间概念不清,不能确定线面间、平面间的位置关系。多数对异面直线的位置关系不清楚。第8~13题涉及解析几何的问题,考查曲线方程中的待定系数,直线方程,点到直线的距离问题,情况尚好,答对率70%左右。
第11~13题反而答错率占65%左右,主要反映出学生对各种二次曲线的标准方程混淆不清,对几何要素的位置掌握不好,突出表现在对二次曲线的几何性质掌握较差,不牢固。单项选择题:学生一般得分为12―18分第1题选对的占80%以上,学生对平面的基本性质中的公理及推论掌握较好。
第2题选对的占70%左右,学生对两向量垂直与两向量数量积之间的关系掌握较好。
答错较多的是第4和第6题,其次是第5题。
第5题多数错选(a)或(b),可见学生对一般圆方程用公式求圆心和半径不熟悉,同时用配方法化圆的一般方程为圆的标准方程,求圆心和半径也掌握不好。特别是第4题平行坐标轴,坐标变换竟有33%的学生错选(b)或不选(空白),可见不少学生对坐标轴平移引起坐标变换的新概念并不清楚,对新、旧坐标的概念也不清楚。第6题不少学生错选(b),反映出学生对向量平行和垂直的条件混淆,判断两向量相等的条件也不明确,才会出现如此的错误。
第三题:
(1)题是考查异面直线的成的角及长方体对角的计算。对本题的解答约80%的学生能找到异面直线a1c1与bc所成的角,但有30%~40%的学生不习惯用反正切函数表示角度,反而用反正弦或反余弦函数表示角度,教学中应引起跑的重视。计算长方体的对角线长仅有20%的学生会用简捷方法“长方体的对角线的平方等于长、宽、高的平方和”。其余学生计算较繁琐。
(2)题是考查证明三点共线问题。约有80%的学生采用不同的方法证明,有用解析法的,也有用向量法的,也有用平面几何与解析几何综合知识证明的“三点连线中,两线之和等于第三线则三点共线”,反映出各教学点对该问题给出了多种证明法和思路,值得提倡。
第(3)题考查根据不同的己知条件选用向量数量积的表达式。第四题:1题主要考查动点的轨迹方程,学生的解答,多出现两种方法,按轨迹满足椭圆定义求解或按求轨迹方程的四大步骤求解,但解答中又出现不少错误。
第五题:
1题是考查由给定双曲线的条件求它的标准方程和渐近线方程,但不少学生将双曲线中的参数a,b与随圆中的参数a、b、c混为一谈,对渐逐近线方程掌握不好,不能根据渐逐线的位置,写出渐近线的方程。
2题主要考查用向量法证明四边形是矩形的方法,但不少学生随心所意,反而用解析几何的方法去证明,严格讲这是错误的,应该引起重视。有的学生在证明中逻辑混乱,逻辑推理叙述不严密,在矩形的证明中,用“垂直证明垂直”。对向量的知识掌握不牢固,求向量的坐标时,差值的顺序不对,导致计算错误。
第六题:本题是一道立体几何题,主要考查的知识点一是两平面垂直的性质,二是直线与平面所成的角。本题评阅结果,有近60%的考生得满分,这些学生是掌握了考查的知识点,解题思路清晰,能迅速地用两平面垂直的性质,证明δabc和δbdc是直角三角形,求出bc和cd后,又用三角函数计算cd与平面所成的角。有的学生构造三角形思路灵活,连接ad得直角δabd,在此三角形中求出ad,又在直角δdac中求出cd,最后在直角δdbc中求出dc与平面所成的角,即∠dcb。在20%的学生错答的原因是找不准直角,把直角边当成斜边来计算,导致解答错误。有近20%的学生空间概念较差,交白卷,有的认为ab与cd是在一个平面上且相交,完全按平面几何的知识来解答本题,如用全等三角形和相似三角形的知识来解,这是完全没有空间概念的主要表现。
五、通过考试反馈的信息对今后教学的建议通过以上考试命题,试卷质量,答卷质量,基本概况的综合分析,实行统一命题,统一考试,统一阅卷是非常必要的。将考试成绩通报各教学点,对互通信息,相互学习,取长补短,努力改进教学方法,分析和探索初中起点五年制大专教育(高职)的教学规律,也是很有必要的。特别是通过考生的答卷分析,各教学点要开展教研活动,分析教学中的薄弱环节,采取有针对性的措施,不断的提高教学质量。
上一篇:开心一笑微信朋友圈早安问候语
下一篇:家长学校优质教案